Production of Poly-γ-Glutamate (PGA) Biopolymer by Batch and Semicontinuous Cultures of Immobilized Bacilluslicheniformis strain-R

نویسندگان

  • Mahmoud M. Berekaa
  • Samy A. El Aassar
  • Samia M. El-Sayed
  • Aliaa M. EL Borai
چکیده

Production of Polyglutamate (PGA) biopolymer by immobilized Bacillus licheniformis strain-R was intensively investigated. Preliminary experiments were carried out to address the most suitable immobilization methodology. Entrapment of Bacillus cells in alginate-agar led optimal PGA production (36.75 g/l), with 1.32-and 2.18-fold increase in comparison with alginate-or K-carrageenan-immobilized cells, respectively. During semicontinuous cultivation of agar-alginate gel-cell mixture, production of PGA by 10 ml mixture was increased from 2(nd) to 3(rd) run whereas, increased till the 4(th) run using 15ml mixture. Adsorption was the most suitable immobilization technique for production of PGA and the sponge cubes was the preferred matrix recording 43.2 g/l of PGA with the highest cell adsorption. Furthermore, no PGA was detected when B. licheniformis cells were adsorbed on wood and pumice. Although luffa pulp-adsorbed cells recorded the highest PGA production (50.4 g/l), cell adsorption was the lowest. Semicontinuous cultivation of B. licheniformis cells adsorbed on sponge led to increase of PGA production till the 3(rd) run and reached 55.5 g/l then slightly decreased in the 4(th) run. The successful use of fixed-bed bioreactor for semicontinuous cultivation of B. licheniformis cells held on sponge cubes (3 runs, 96 hours/run) provides insight for the potential biotechnological production of PGA by immobilized cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum

BACKGROUND Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some uni...

متن کامل

Alkaline serine protease AprE plays an essential role in poly-γ-glutamate production during natto fermentation.

Natto is a traditional Japanese food made from soybeans fermented by natto starter strains of Bacillus subtilis natto. It has been suggested that extracellular protease activity released by the bacteria are involved in the production of poly-γ-glutamate (γ-PGA) during natto fermentation. One of the natto starters, strain r22, possesses at least seven genes, each of which encoded an extracellula...

متن کامل

Improvement of Bacillus subtilis for poly‐γ‐glutamic acid production by genome shuffling

Poly-γ-glutamic acid (γ-PGA) is a promising microbial polymer with potential applications in industry, agriculture and medicine. The use of high γ-PGA-producing strains is an effective approach to improve productivity of γ-PGA. In this study, we developed a mutant, F3-178, from Bacillus subtilis GXA-28 using genome shuffling. The morphological characteristics of F3-178 and GXA-28 were not ident...

متن کامل

Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction

We constructed a metabolically engineered glutamate-independent Bacillus amyloliquefaciens strain with considerable γ-PGA production. It was carried out by double-deletion of the cwlO gene and epsA-O cluster, as well as insertion of the vgb gene in the bacteria chromosome. The final generated strain NK-PV elicited the highest production of γ-PGA (5.12 g l(-1)), which was 63.2% higher than that ...

متن کامل

Production of Poly-γ-glutamic acid by Bacillus licheniformis: Synthesis and Characterization

Poly-γ-glutamic acid (γ-PGA), one type of amino acid polymers, consists of D-and L-glutamic acids linked with amide bonding between α-amino and γ-carboxylic acids. Naturally, γ-PGA could be biodegradable polymer and water-solubleapplied in various industries such as food, cosmetics, and pharmaceutical industries. Variation of initial L-glutamic acid concentration affecting on the production of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009